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12.512.5The Bohr Model of the Atom

The Energy Levels of Hydrogen
As early as the middle of the nineteenth century, it was known that hydrogen was the
lightest and simplest atom and thus an ideal candidate for the study of atomic struc-
ture. Its emission spectrum was of particular interest. The spacing of spectral lines in the
visible region formed a regular pattern. In 1885, this pattern attracted the attention of
J.J. Balmer, a Swiss teacher who devised a simple empirical equation from which all of
the lines in the visible spectrum of hydrogen could be computed. He found that the
wavelengths of the spectral lines obeyed the equation
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where R is a constant, later called the Rydberg constant, whose value Balmer found to be
1.097 � 107 m�1, and n is a whole number greater than 2. Each successive value of n
(3, 4, 5, ... ) yields a value for the wavelength of a line in the spectrum.

Further studies of the hydrogen spectrum carried out over the next three or four
decades, using ultraviolet and infrared detection techniques, revealed that the entire
hydrogen spectrum obeyed a relationship generalizing the one devised by Balmer. By
replacing the 22 term in Balmer’s expression with the squares of other integers, a more
general expression was devised to predict the wavelengths of all possible lines in the
hydrogen spectrum:
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where nl is any whole number 1, 2, 3, 4, ... , and nu is any whole number greater than nl.
The choice of subscripts l for “lower” and u for “upper” reflects the idea of a transition
between energy levels.

This expression can be related to the energy of the emitted photons by isolating �
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� and substituting. Also, the energy of the emitted photon Ep is determined

from the difference in energy of the energy levels involved in the transition producing
the photon, that is Ep � Eu � El . This yields
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Now, when nu becomes very large, Eu approaches the ionization state. If we choose the

ionization state to have zero energy, then Eu → 0 and �
n
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Rutherford’s planetary model proposed that the hydrogen atom consists of a single
proton nucleus (the Sun) and a single orbiting electron (a planet). In this model, the
Coulomb force of attraction binds the electron to its nucleus in much the way Earth is
bound to the Sun by the gravitational force. When we studied such a gravitational system
earlier (Section 6.3), we found it useful to choose the zero level of energy as the point where
the two masses are no longer bound to each other. This zero level of energy denotes the
borderline between the bound and the free condition of the system. If an object has a total
energy greater than zero, it can reach an essentially infinite distance, where its potential
energy is near zero, without coming to rest. For the hydrogen atom, this situation cor-
responds to ionization: the electron is no longer bound to its nucleus, as part of the
atom, but is liberated. Thus, if we choose E I � 0 when n approaches infinity, then the
expression for the energy levels of hydrogen becomes even simpler:
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Then, converting from joules to electron volts, we have

(1.097 � 107 m�1)(6.63 � 10�34 J�s)(3.00 � 108 m/s)
������
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En � � eV where n � 1, 2, 3, …13.6
�
n2

Table 1 Energy Levels of Hydrogen

Level Value of n Energy Energy Above 
Ground State

ground state 1 �13.6 eV 0

1st excited state 2 �3.4 eV 10.2 eV

2nd excited state 3 �1.51 eV 12.1 eV

3rd excited state 4 �0.85 eV 12.8 eV

4th excited state 5 �0.54 eV 13.1 eV

�

ionization state � 0 13.6 eV

0

–1.51

–3.40

–13.6

E (eV)

–0.85

ground state (lowest)

“bound” electron
E < 0 eV (only certain
energies allowed)

unbound (ionized) 
electron E > 0 eVn = ∞

n = 3

n = 2

n = 1

n = 4

Figure 1
Energy levels of hydrogen

The Energy Levels of Hydrogen
(p. 656)
You can measure the wavelengths
and calculate the energies for the
first four lines in the Balmer series,
then compare your results with the
theoretical values.

INVESTIGATION 12.5.1
Using this equation, we can calculate the values of all the energy levels of the hydrogen

atom, as in Table 1. The values can be represented graphically on an energy-level diagram
(Figure 1), showing both the energy above the ground state (on the right) and the energy
below ionization (on the left).

By performing Investigation 12.5.1 in the Lab Activities section at the end of this
chapter, you can measure the line spectra in hydrogen.

Abbreviations
Note that l stands for lower, but I,
as in EI, stands for ionization.

LEARNING TIP
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Calculate the energy of the n � 6 state for hydrogen, and state it with respect to the
ground state.

Solution
n � 6

E � ?
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E � �0.38 eV

The n � 6 energy level is �0.38 eV, or �13.6 eV � (�0.38 eV) � 13.2 eV, above the
ground state.

SAMPLE problem 1

If an electron in a hydrogen atom moves from the n � 6 to the n � 4 state, what is the
wavelength of the emitted photon? In what region of the electromagnetic spectrum does
it reside?

Solution
λ � ?

From Sample Problem 1, the energy of the n � 6 state is �0.38 eV.

The energy of the n � 4 state is

E � ��
13.
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E � �0.85 eV

energy change � �0.38 eV� (� 0.85 eV)
energy change � 0.47 eV

0.47 eV � (0.47 eV)(1.60 � 10�19 J/eV) � 7.5 � 10�20 J

The wavelength is calculated from the relationship
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λ � 2.6 � 10�6 m, or 2.6 � 102 nm

The wavelength of the emitted photon is 2.6 � 102 nm, in the ultraviolet region of the spectrum.

(6.63 � 10�34 J�s)(3.00 � 108 m/s)
����

7.52 � 10�20 J

SAMPLE problem 2
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Figure 2
Niels Bohr (1885–1962) received his
Ph.D. from the University of
Copenhagen in 1911 but worked at
Manchester University with
Rutherford until 1916, when he
returned to Copenhagen to take up
a professorial chair in physics. He
was awarded the 1922 Nobel Prize
in physics for his development of the
atomic model. An avid supporter of
the peaceful uses of atomic energy,
Bohr organized the first Atoms for
Peace Conference in 1955 and in
1957 was honoured with the first
Atoms for Peace Award.

Practice
Understanding Concepts

1. What values of n are involved in the transition that gives rise to the emission of a
388-nm photon from hydrogen gas?

2. How much energy is required to ionize hydrogen when it is in
(a) the ground state?
(b) the state for n � 3?

3. A hydrogen atom emits a photon of wavelength 656 nm. Between what levels
did the transition occur?

4. What is the energy of the photon that, when absorbed by a hydrogen atom,
could cause
(a) an electron transition from the n � 3 state to the n � 5 state?
(b) an electron transition from the n � 5 state to the n � 7 state?

Answers

1. n � 8 to n � 2

2. (a) 13.6 eV

(b) 1.51 eV

3. n � 3 and n � 2

4. (a) 0.97 eV

(b) 0.26 eV

The Bohr Model
The Rutherford planetary model of the atom had negatively charged electrons moving
in orbits around a small, dense, positive nucleus, held there by the force of Coulomb
attraction between unlike charges. It was very appealing, although it did have two major
shortcomings. First, according to Maxwell’s well-established theories of electrodynamics,
any accelerating electric charge would continuously emit energy in the form of electro-
magnetic waves. An electron orbiting a nucleus in Rutherford’s model would be accel-
erating centripetally and, hence, continuously giving off energy in the form of
electromagnetic radiation. The electron would be expected to spiral in toward the nucleus
in an orbit of ever-decreasing radius, as its total energy decreased. Eventually, with all its
energy spent, it would be captured by the nucleus, and the atom would be considered to
have collapsed. On the basis of classical mechanics and electromagnetic theory, atoms
should remain stable for only a relatively short time. This is, of course, in direct con-
tradiction to the evidence that atoms exist on a seemingly permanent basis and show no
such tendency to collapse.

Second, under certain conditions, atoms do emit radiation in the form of visible and
invisible light, but only at specific, discrete frequencies. The spiralling electron described
above would emit radiation in a continuous spectrum, with a gradually increasing fre-
quency until the instant of arrival at the nucleus. Furthermore, the work of Franck and
Hertz plus the analysis of emission and absorption spectra had virtually confirmed the
notion of discrete, well-defined internal energy levels within the atom, a feature that
Rutherford’s model lacked.

Shortly after the publication of Rutherford’s proposals, the young Danish physicist
Niels Bohr (Figure 2), a post-doctoral student in Rutherford’s laboratory, became
intrigued with these problems inherent in the model. He realized that the laws of clas-
sical mechanics and electrodynamics might fail to apply within the confines of the atom.
Inspired by the Planck–Einstein introduction of quanta into the theory of electromag-
netic radiation, Bohr proposed a quantum approach to the motion of electrons within
the atom.

His paper, released in 1913 after two years of formulation, sent shock waves through
the scientific community. In making the following three postulates about the motion
of electrons within atoms, he defied the well-established classical laws of mechanics and
electromagnetism:

Collapse Time
Detailed calculations beyond the
scope of this text suggest that the
collapse of an atom would occur
within 10�8 s.

DID YOU KNOW ??
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• Of all the possible circular and elliptical orbits for electrons around a nucleus,
only a very special few orbits are physically “allowed.” Each allowed orbit is char-
acterized by a different specific amount of electron energy.

• When moving in an allowed orbit, an electron is exempt from the classical laws of
electromagnetism and, in particular, does not radiate energy as it moves along its
orbital path. Each such orbit is consequently called a stationary state.

• Electrons “jump” from a higher energy orbit to a lower energy orbit, with the
energy difference between these two stationary states given off in the form of a
single photon of electromagnetic radiation. Similarly, an atom can only absorb
energy if that amount of energy is equal to the energy difference between a lower
stationary state and some higher one.

To summarize: Bohr’s idea was that atoms only exist in certain stationary states char-
acterized by certain allowed orbits for their electrons, which move in these orbits with
only certain amounts of total energy, the so-called energy levels of the atom. But what
made these allowed orbits different from all the other disallowed orbits?

Bohr believed, drawing on the work of Planck, that something in the model of the
atom must be quantized. Although he actually chose angular momentum, the picture is
clearer if we leap ahead a decade and borrow the concept of wave–particle duality from
de Broglie. Let us suppose that electrons can only exist in stable orbits if the length of the
orbital path is a whole number of de Broglie electron wavelengths. Recall that an elec-
tron of mass m and speed v has a de Broglie wavelength given by

λ � �m
h
v�

where h is Planck’s constant (6.63 � 10�34 J�s).
The standing-wave pattern for an electron in a stable orbit might then, for example,

be three wavelengths, as in Figure 3(a). Similar conditions hold for the standing-wave
interference pattern for a string fixed at both ends (Figure 3(b)).

If the orbits are essentially circular, and if the first allowed orbit has a radius r1 and is
occupied by an electron moving with a speed v1, the length of the orbital path will be one 
wavelength:

2pr1 � λ

2pr1 � �m
h
v1
�

Similarly, for the second allowed orbit,

2pr2 � 2λ

Section 12.5

stationary state the orbit of an
electron in which it does not radiate
energy

A

λ

B

2  r = 3λ

r

π

λ

Figure 3
(a) The standing-wave pattern for

an electron wave in a stable
orbit of hydrogen, here chosen
to have exactly three wave-
lengths 

(b) The standing-wave pattern for
a string fixed at both ends 

(a) (b)
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More generally, for the nth allowed orbit,

2prn � nλ � n��m
h
vn
��

Thus, according to Bohr, the allowed orbits are those determined by the relationship

mvnrn � n��
2
h
p
�� (n � 1, 2, … )

The whole number n appearing in this equation, which represents the number of
de Broglie wavelengths in the orbital path, is called the “quantum number” for the
allowed orbit (Figure 4). The equation itself, named “Bohr’s quantum condition,” pro-
vides the key to an explanation of atomic structure more complete than Rutherford’s.

The Wave-Mechanical Model of the Hydrogen Atom
With the formulation of Bohr’s quantum hypothesis about the special nature of the
allowed orbits, it became possible to combine classical mechanics with quantum wave
mechanics to produce an elegant model of atomic structure, satisfactory for hydrogen
(but overhauled a few years later to generalize the electron orbits of all elements).

A hydrogen atom consists of a stationary proton of mass mp and charge +1e and a
moving electron of mass me and charge –1e. The electron moves in a circular orbit of
radius rn at a constant speed vn in such a way that n complete de Broglie wavelengths fit
exactly into each orbital path. The Coulomb force of electrical attraction between the
proton and the electron provides the force necessary to sustain the circular orbit; that is,

Fc � Fe

�

or more simply,
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Applying Bohr’s quantum hypothesis,
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Solving Equation (2) for vn, we have
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as an expression for the radius of the nth circular allowed orbit in the hydrogen atom.
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Symbols
The expression mv0r0 represents the
angular momentum of a mass m,
moving in a circle of radius r0, at a
constant speed v0. The quantity

�
2
h
p
� appears so frequently 

in quantum physics that it is often
abbreviated to � (“h bar”). 

DID YOU KNOW ??

Figure 4
Standing circular waves for (a) two
and (b) five de Broglie wavelengths.
The number of wavelengths n is also
the quantum number.

n = 2

n = 5

(a)

(b)
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By substituting known values for the constants, we can evaluate this radius:

rn � n2� �
rn � 5.3 � 10�11n2 m

The radius of the smallest orbit in hydrogen (when n � 1) is 5.3 � 10�11 m, some-
times called the Bohr radius. It is a good estimate of the normal size of a hydrogen atom.
The radii of other orbits, given by the equation above, are

r2 � 22r1 � 4r1 � 4(5.3 � 10�11 m) � 2.1 � 10�10 m

r3 � 32r1 � 9r1 � 4.8 � 10�10 m (and so on)

Recall that, according to Bohr, an electron can only exist in one of these allowed orbits,
with no other orbital radius being physically possible.

To find the speed vn with which the electron moves in its orbit, we rearrange 
Equation (2a) to get

vn �

vn � �
2p

n
k
h
e2
� Equation (4)

Again substituting known values, we have

vn � �
1
n�� �

vn � �
1
n� (2.2 � 106) m/s

so that v1 � 2.2 � 106 m/s

v2 � �
1
2

� v1 � 1.1 � 106 m/s

v3 � �
1
3

� v1 � 7.3 � 105 m/s (and so on)

Just as with a satellite orbiting Earth, the electron has a definite, characteristic energy,
given by the sum of its kinetic and electrical-potential energies. Thus, in its nth orbit
the total energy of the electron is 
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Substituting values for vn from Equation (4) and for rn from Equation (3), we have
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2p(9.0 � 109 N�m2/C2)(1.6 � 10�19 C)2
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6.63 � 10�34 J�s
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(6.63 � 10�34 J�s)2
������
4p2 (9.1 � 10�31 kg)(9.0 � 109 N�m2/C2)(1.6 � 10�19 C)2
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Again substituting values for the constants, we have

En � ��
n
1
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n2
10�18
� J
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1
n
3

2
.6
� eV

Thus, the energy levels for the allowed orbits of hydrogen are

E1 � � � �13.6 eV

E2 � ��
1
2
3

2
.6
� � �3.40 eV

E3 � ��
1
3
3

2
.6
� � �1.51 eV (and so on)

This model verifies, exactly, the hydrogen atom energy levels previously established on
the basis of the hydrogen emission spectrum. Although all the energy levels are negative,
as is characteristic of a “bound” system, the energy of the outer orbits is less negative,
and hence greater, than the energy of the inner orbits. The orbit closest to the nucleus
(n � 1) has the lowest energy (–13.6 eV), the smallest radius (0.53 � 10�10 m), and the
greatest electron speed (2.2 � 106 m/s).

It is now possible to draw a complete and detailed energy-level diagram for the
hydrogen atom (Figure 5).

13.6
�
12

2p2(9.1 � 10�31 kg)(9.0 � 109 N�m2/C2)2(1.6 � 10�19 C)4
�������

(6.63 � 10�34 J�s)2

n = ∞
n = 4
n = 3

n = 2

Paschen series
E1 has n = 3

Lyman series
E1 has n = 1

Balmer series
E1 has n = 2

emission: E1 = E l + hc

n = 1

0

–0.85
–1.51

–3.40

–13.6

En
er

gy
 (

eV
)

λ

Figure 5
Energy-level diagram for the
hydrogen atom

Rydberg Constant
Spectroscopists had derived the
same result for En by examining the
Rydberg constant: 

En � ��
R
n
h
2
c
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13.

n
6

2
eV

� .

This meant that the Rydberg con-
stant, obtained empirically by fitting
the data for the emission lines of
hydrogen, agreed with Bohr’s pre-
dicted value to 0.02%, one of the
most accurate predictions then
known in science.

DID YOU KNOW ??
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The lone electron of the hydrogen atom normally resides in the ground state (n � 1).
However, in absorbing energy from photons or during collisions with high-speed par-
ticles, it may be boosted up to any of the excited states (n � 2, 3, 4, ... ). Once in an
excited state, the electron will typically jump down to any lower energy state, giving off
the excess energy by creating a photon. The arrows in Figure 5 represent downward
transitions giving rise to the various lines found in the hydrogen emission spectrum.
They are grouped together in series, according to their common lower state; the series
are named after famous spectroscopists whose work led to their discovery. The Lyman
series is the set of transitions from higher energy levels to the ground state (n � 1); the
Balmer series is the set of downward transitions to n � 2; and the Paschen series is the
set of downward transitions to n � 3.

A sample problem illustrates how we can identify these spectral lines.

Section 12.5

Lyman series series of wave-
lengths emitted in transitions of a
photon from higher energy levels to
the n � 1, or ground, state

Balmer series series of wave-
lengths emitted in transitions of a
photon from higher energy levels to
the n � 2 state

Paschen series series of wave-
lengths emitted in transitions of a
photon from higher energy levels to
the n � 3 state

Determine, with the help of Figure 5, the wavelength of light emitted when a hydrogen
atom makes a transition from the n � 5 orbit to the n � 2 orbit. 

Solution
λ � ?

For n � 5, E5 � ��
1
5
3

2
.6
� eV � �0.54 eV

For n � 2, E2 � ��
1
2
3

2
.6
� eV � �3.40 eV

Ep � E5 � E2

� �0.54 eV �(�3.40 eV)

Ep � 2.86 eV

Thus,

λ � �
h
E
c

p
�

�

λ � 4.35 � 10�7 m, or 435 nm

The wavelength of light emitted is 435 nm. (This is a violet line in the visible spectrum, the
third line in the Balmer series.) 

(6.63 � 10�34 J�s)(3.00 � 108 m/s)
����

(2.86 eV)(1.60 � 10�19 J/eV)

SAMPLE problem 3

Practice
Understanding Concepts

5. How does the de Broglie wavelength of the electron compare with the circum-
ference of the first orbit?

6. Calculate the energies of all the photons that could possibly be emitted by a
large sample of hydrogen atoms, all initially excited to the n � 5 state.

7. In performing a Franck–Hertz type experiment, you accelerate electrons through
hydrogen gas at room temperature over a potential difference of 12.3 V. What
wavelengths of light could be emitted by the hydrogen?

8. Calculate the wavelength of the line in the hydrogen Balmer series for which 
n � 4.

Answers

6. 0.31 eV; 0.65 eV; 0.96 eV; 
1.9 eV; 2.6 eV; 2.86 eV; 10.2 eV;
12.1 eV; 12.8 eV; 13.1 eV

7. 122 nm; 103 nm; 654 nm

8. 488 nm
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Success of the Bohr Model
Although based on theoretical assumptions designed to fit the observations rather than
on direct empirical evidence, Bohr’s model was for many reasons quite successful:

• It provided a physical model of the atom whose internal energy levels matched
those of the observed hydrogen spectrum.

• It accounted for the stability of atoms: Once an electron had descended to the
ground state, there was no lower energy to which it could jump. Thus, it stayed
there indefinitely, and the atom was stable.

• It applied equally well to other one-electron atoms, such as a singly ionized
helium ion.

The model was incomplete, however, and failed to stand up to closer examination:

• It broke down when applied to many-electron atoms because it took no account
of the interactions between electrons in orbit.

• With the development of more precise spectroscopic techniques, it became
apparent that each of the excited states was not a unique, single energy level but a
group of finely separated levels, near the Bohr level. To explain this splitting of
levels, it was necessary to introduce modifications to the shape of the Bohr orbits
as well as the concept that the electron was spinning on an axis as it moved.

Even though the Bohr model eventually had to be abandoned, it was a triumph of
original thought and one whose basic features are still useful. It first incorporated the ideas
of quantum mechanics into the inner structure of the atom and provided a basic phys-
ical model of the atom. In time, scientific thought would replace it by moving into the
less tangible realm of electron waves and probability distributions, as discussed in the next
section.

Answers

9. (a) 93 nm

(b) 1.2 � 104 nm

10. 10.2 eV; 122 nm

11. (a) 122 nm

(b) 1.89 � 103 nm

12. n � 4.3 � 103;
�7.4 � 10�7 eV

• Balmer devised a simple empirical equation from which all of the lines in the 

visible spectrum of hydrogen could be computed: �
λ
1

� � R ��
n
1

l
2� � �

n

1
2
u

��.

His equation allowed the energy levels for hydrogen to be predicted as 

En � ��
13.

n
6

2
eV

� (n � 1, 2, 3, … ).

• The work of Franck and Hertz, and the analysis of emission and absorption
spectra had confirmed that there are discrete, well-defined internal energy levels
within the atom.

The Bohr Model of the AtomSUMMARY

9. Calculate the wavelengths of (a) the most energetic and (b) the least energetic
photon that can be emitted by a hydrogen atom in the n � 7 state.

10. Calculate the energy and wavelength of the least energetic photon that can be
absorbed by a hydrogen atom at room temperature.

11. Calculate the longest wavelengths in (a) the hydrogen Lyman series (n � 1) and
(b) the hydrogen Paschen series (n � 3).

12. What value of n would give a hydrogen atom a Bohr orbit of radius 1.0 mm? 
What would be the energy of an electron in that orbit?
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• Bohr proposed that atoms only exist in certain stationary states with certain
allowed orbits for their electrons. Electrons move in these orbits with only certain
amounts of total energy, called energy levels of the atom.

• Bohr made the following three postulates regarding the motion of electrons
within atoms:

1. There are a few special electron orbits that are “allowed,” each characterized by
a different specific electron energy.

2. When moving in an allowed stationary orbit, an electron does not radiate
energy.

3. Electrons may move from a higher-energy orbit to a lower-energy orbit, giving
off a single photon. Similarly, an atom can only absorb energy if that energy is
equal to the energy difference between a lower stationary state and some
higher one.

• Bohr combined classical mechanics with quantum wave mechanics to produce a
satisfactory model of the atomic structure of hydrogen.

• The lone electron of a hydrogen atom normally resides in the ground state 
(n � 1). By absorbing energy from photons, however, or from collisions with
high-speed particles, it may be boosted up to any of the excited states 
(n � 2, 3, 4, ... ). Once in an excited state, the electron quickly moves to any lower
state, creating a photon in the process.

• Bohr’s model was quite successful in that it provided a physical model of the
hydrogen atom, matching the internal energy levels to those of the observed
hydrogen spectrum, while also accounting for the stability of the hydrogen atom.

• Bohr’s model was incomplete in that it broke down when applied to many-
electron atoms.

Section 12.5 Questions
Understanding Concepts

1. In the hydrogen atom, the quantum number n can increase
without limit. Does the frequency of possible spectral lines
from hydrogen correspondingly increase without limit?

2. A hydrogen atom initially in its ground state (n � 1)
absorbs a photon, ending up in the state for which n � 3.
(a) Calculate the energy of the absorbed photon.
(b) If the atom eventually returns to the ground state, what

photon energies could the atom emit?

3. What energy is needed to ionize a hydrogen atom from the
n � 2 state? How likely is such ionization to occur? Explain
your answer.

4. Determine the wavelength and frequency of the fourth
Balmer line (emitted in the transition from n � 6 to n � 2)
for hydrogen.

5. For which excited state, according to the Bohr theory, can
the hydrogen atom have a radius of 0.847 nm?

6. According to the Bohr theory of the atom, the speed of an
electron in the first Bohr orbit of the hydrogen atom is
2.19 � 106 m/s.
(a) Calculate the de Broglie wavelength associated with

this electron.
(b) Prove, using the de Broglie wavelength, that if the

radius of the Bohr orbit is 4.8 � 10�10 m, then the
quantum number is n � 3.

7. Calculate the Coulomb force of attraction on the 
electron when it is in the ground state of the Bohr
hydrogen atom.


